Given expression: [tex]\frac{\frac{1}{x-3}+\frac{4}{x}}{\frac{4}{x}-\frac{1}{x-3}}[/tex].
[tex]\mathrm{Least\:Common\:Multiplier\:of\:}x,\:x-3:\quad x\left(x-3\right)[/tex]
[tex]\mathrm{Adjust\:Fractions\:based\:on\:the\:LCM}[/tex]
[tex]\frac{4}{x}-\frac{1}{x-3}=\frac{4\left(x-3\right)}{x\left(x-3\right)}-\frac{x}{x\left(x-3\right)}[/tex]
[tex]=\frac{4\left(x-3\right)-x}{x\left(x-3\right)}[/tex]
[tex]=\frac{3x-12}{x\left(x-3\right)}[/tex]
[tex]\frac{4}{x}-\frac{1}{x-3}=\frac{x}{x\left(x-3\right)}+\frac{4\left(x-3\right)}{x\left(x-3\right)}[/tex]
[tex]=\frac{x+4\left(x-3\right)}{x\left(x-3\right)}[/tex]
[tex]=\frac{5x-12}{x\left(x-3\right)}[/tex]
[tex]\frac{\frac{1}{x-3}+\frac{4}{x}}{\frac{4}{x}-\frac{1}{x-3}}=\frac{\frac{5x-12}{x\left(x-3\right)}}{\frac{3x-12}{x\left(x-3\right)}}[/tex]
[tex]\mathrm{Divide\:fractions}:\quad \frac{\frac{a}{b}}{\frac{c}{d}}=\frac{a\cdot \:d}{b\cdot \:c}[/tex]
[tex]=\frac{\left(5x-12\right)x\left(x-3\right)}{x\left(x-3\right)\left(3x-12\right)}[/tex]
[tex]\mathrm{Cancel\:the\:common\:factor:}\:x[/tex]
[tex]=\frac{\left(5x-12\right)\left(x-3\right)}{\left(x-3\right)\left(3x-12\right)}[/tex]
[tex]\mathrm{Cancel\:the\:common\:factor:}\:x-3[/tex]
[tex]=\frac{5x-12}{3x-12} \ \ \ : Final Answer.[/tex]